Methods

Enumeration

Infer({model: ..., method: 'enumerate'[, ...]})

This method performs inference by enumeration.

The following options are supported:

maxExecutions

Maximum number of (complete) executions to enumerate.

Default: Infinity

strategy

The traversal strategy used to explore executions. Either 'likelyFirst', 'depthFirst' or 'breadthFirst'.

Default: 'likelyFirst' if maxExecutions is finite, 'depthFirst' otherwise.

Example usage:

Infer({method: 'enumerate', maxExecutions: 10, model: model});
Infer({method: 'enumerate', strategy: 'breadthFirst', model: model});

Rejection sampling

Infer({model: ..., method: 'rejection'[, ...]})

This method performs inference using rejection sampling.

The following options are supported:

samples

The number of samples to take.

Default: 1

maxScore

An upper bound on the total factor score per-execution.

Default: 0

incremental

Enable incremental mode.

Default: false

Incremental mode improves efficiency by rejecting samples before execution reaches the end of the program where possible. This requires every call to factor(score) in the program (across all possible executions) to have score <= 0.

Example usage:

Infer({method: 'rejection', samples: 100, model: model});

MCMC

Infer({model: ..., method: 'MCMC'[, ...]})

This method performs inference using Markov chain Monte Carlo.

The following options are supported:

samples

The number of samples to take.

Default: 100

lag

The number of additional iterations to perform between samples.

Default: 0

burn

The number of additional iterations to perform before collecting samples.

Default: 0

kernel

The transition kernel to use for inference. See Kernels.

Default: 'MH'

verbose

When true, print the current iteration and acceptance ratio to the console during inference.

Default: false

onlyMAP

When true, only the sample with the highest score is retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'MCMC', samples: 1000, lag: 100, burn: 5, model: model});

Kernels

The following kernels are available:

MH

Implements single site Metropolis-Hastings. [wingate11]

This kernel makes use of any drift kernels specified in the model.

Example usage:

Infer({method: 'MCMC', kernel: 'MH', model: model});
HMC

Implements Hamiltonian Monte Carlo. [neal11]

As the HMC algorithm is only applicable to continuous variables, HMC is a cycle kernel which includes a MH step for discrete variables.

The following options are supported:

steps

The number of steps to take per-iteration.

Default: 5

stepSize

The size of each step.

Default: 0.1

Example usage:

Infer({method: 'MCMC', kernel: 'HMC', model: model});
Infer({method: 'MCMC', kernel: {HMC: {steps: 10, stepSize: 1}}, model: model});

Incremental MH

Infer({model: ..., method: 'incrementalMH'[, ...]})

This method performs inference using C3. [ritchie15]

This method makes use of any drift kernels specified in the model.

The following options are supported:

samples

The number of samples to take.

Default: 100

lag

The number of additional iterations to perform between samples.

Default: 0

burn

The number of additional iterations to perform before collecting samples.

Default: 0

verbose

When true, print the current iteration to the console during inference.

Default: false

onlyMAP

When true, only the sample with the highest score is retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

To maximize efficiency when inferring marginals over multiple variables, use the query table, rather than building up a list of variable values:

var model = function() {
  var hmm = function(n, obs) {
    if (n === 0) return true;
    else {
      var prev = hmm(n-1, obs);
      var state = transition(prev);
      observation(state, obs[n]);
      query.add(n, state);
      return state;
    }
  };
  hmm(100, observed_data);
  return query;
}
Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

query is a write-only table which can be returned from a program (and thus marginalized). The only operation it supports is adding named values:

query.add(name, value)
Arguments:
  • name (any) – Name of value to be added to query. Will be converted to string, as JavaScript object keys are.
  • value (any) – Value to be added to query.
Returns:

undefined

SMC

Infer({model: ..., method: 'SMC'[, ...]})

This method performs inference using sequential Monte Carlo. When rejuvSteps is 0, this method is also known as a particle filter.

The following options are supported:

particles

The number of particles to simulate.

Default: 100

rejuvSteps

The number of MCMC steps to apply to each particle at each factor statement. With this addition, this method is often called a particle filter with rejuvenation.

Default: 0

rejuvKernel

The MCMC kernel to use for rejuvenation. See Kernels.

Default: 'MH'

importance

Controls the importance distribution used during inference.

Specifying an importance distribution can be useful when you know something about the posterior distribution, as specifying an importance distribution that is closer to the posterior than the prior will improve the statistical efficiency of inference.

This option accepts the following values:

  • 'default': When a random choice has a guide distribution specified, use that as the importance distribution. For all other random choices, use the prior.

  • 'ignoreGuide': Use the prior as the importance distribution for all random choices.

  • 'autoGuide': When a random choice has a guide distribution specified, use that as the importance distribution. For all other random choices, automatically generate a mean-field guide and use that as the importance distribution.

    Default: 'default'

onlyMAP

When true, only the sample with the highest score is retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'SMC', particles: 100, rejuvSteps: 5, model: model});

Optimization

Infer({model: ..., method: 'optimize'[, ...]})

This method performs inference by optimizing the parameters of the guide program. The marginal distribution is a histogram constructed from samples drawn from the guide program using the optimized parameters.

The following options are supported:

samples

The number of samples used to construct the marginal distribution.

Default: 1

In addition, all of the options supported by Optimize are also supported here.

Example usage:

Infer({method: 'optimize', samples: 100, steps: 100, model: model});

Forward Sampling

Infer({model: ..., method: 'forward'[, ...]})

This method builds a histogram of return values obtained by repeatedly executing the program given by model, ignoring any factor statements encountered while doing so. Since condition and observe are written in terms of factor, they are also effectively ignored.

This means that unlike all other methods described here, forward sampling does not perform marginal inference. However, sampling from a model without any factors etc. taken into account is often useful in practice, and this method is provided as a convenient way to achieve that.

The following options are supported:

samples

The number of samples to take.

Default: 1

guide

When true, sample random choices from the guide using the current global parameters. Otherwise, sample from the model.

Default: false

Example usage:

Infer({method: 'forward', model: model});
Infer({method: 'forward', guide: true, model: model});

Bibliography

[wingate11]David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. “Lightweight implementations of probabilistic programming languages via transformational compilation.” International Conference on Artificial Intelligence and Statistics. 2011.
[neal11]Radford M. Neal, “MCMC using Hamiltonian dynamics.” Handbook of Markov Chain Monte Carlo 2 (2011).
[ritchie15]Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. “C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching.” International Conference on Artificial Intelligence and Statistics. 2016.